АГАПОВА ОЛЬГА ЮРЬЕВНА

ХАРАКТЕРИСТИКА АКТИВНОСТИ β-АДРЕНОРЕЦЕПТОРОВ ПРИ ПРИМЕНЕНИИ СПЕЦИФИЧЕСКИХ АГОНИСТОВ И АНТАГОНИСТОВ У ПАЦИЕНТОВ С БРОНХИАЛЬНОЙ АСТМОЙ С СОЧЕТАННОЙ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИЕЙ

14.01.25 - Пульмонология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации.

Научный руководитель:

Доктор медицинских наук, профессор РАН Зыков Кирилл Алексеевич

Научный консультант:

Доктор химических наук

Скоблов Юрий Самойлович

Официальные оппоненты:

Аверьянов Александр Вячеславович, доктор медицинских наук, Федеральное государственное бюджетное учреждение «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий» Федерального медико-биологического пульмонологического агентства, руководитель центра, заведующий отделением профессор болезней пульмонологии, кафедры внутренних института повышения квалификации.

Терпигорев Станислав Анатольевич, доктор медицинских наук, Государственное бюджетное учреждение здравоохранения Московской области «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», руководитель отделения профпатологии и врачебно-трудовой экспертизы. профессор кафедры терапии факультета усовершенствования врачей.

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Защита состоится «13» декабря 2016 года в 13.00 часов на заседании диссертационного совета Д 001.052.01 при Федеральном государственном бюджетном научном учреждении «Центральный научно-исследовательский институт туберкулеза», по адресу: 107564, г. Москва, Яузская аллея, дом 2.

С диссертацией можно ознакомится в библиотеке и на сайте ФГБНУ «Центральный научноисследовательский институт туберкулеза» (107564, г. Москва, Яузская аллея, дом 2, www.critub.ru).

Автореферат разослан «___»____201_ года

Ученый секретарь

Диссертационного совета, д.м.н.

Юхименко Наталья Валентиновна

ВВЕДЕНИЕ

Актуальность исследования. Основной темы вклад эпидемиологию неинфекционных заболеваний вносят сердечно-сосудистые И бронхо-легочные патологии. На долю сердечно-сосудистых, онкологических и обструктивных болезней легких приходится до 80% причин смерти в Российской Федерации и других странах [WHO, 2011]. В мире около 300млн. больных бронхиальной астмой, распространенность которой от 1 до 18% [GINA, 2011]. Все чаще встречается коморбидная патология, в том числе и сочетание бронхообструктивных и сердечно-сосудистых заболеваний. Наличие у пациента бронхиальной астмы (БА) и артериальной гипертонии (АГ) встречается в 30% случаев [GINA, 2011].

Сердечно-сосудистые и респираторные заболевания имеют общие факторы риска, схожие патогенетические особенности развития. Пациенты с наличием БА и сердечнососудистых заболеваний (ССЗ) выделяется в определенный фенотип, обладающий характерными фенотипическими чертами сочетанной патологии, которые влияют на развитие, прогноз и исход обоих заболеваний [Татенкулова С.Н., 2009]. Препараты, использующиеся в терапии одного из заболеваний, могут вызывать появление нежелательных воздействий на сочетанную патологию, как со стороны сердечнососудистой, так co стороны бронхо-легочной системы. B лечении бронхообструктивных заболеваний основными симптоматическими являются β2-адреномиметики различной продолжительности действия, а для лечения АГ, ИБС и других заболеваний сердечно-сосудистой системы широко применяются βадреноблокаторы. Лекарственные средства, относящиеся к β-агонистам и β-блокаторам, осуществляют свой эффект через взаимодействие с адренергической системой (βадренорецепторами). Сами β-адренорецепторы (β-АР) разделяются на несколько типов. Располагаются они в одних и тех же органах и тканях, но количество их сильно варьирует, что и определяет физиологический эффект воздействия препаратов. При назначении β-агонистов количество рецепторов (экспрессия) на поверхности клетки снижается и может привести к развитию десенситизации (снижению чувствительности) [Bourne H.R., 1997]. Это может быть причиной снижения эффективности применения βагонистов, а также увеличения вероятности развития побочных эффектов. Применение же препаратов из группы β-блокаторов способствует увеличению экспрессии рецепторов и может увеличивать аффинность (сродство к лиганду), что, возможно,

ведет к развитию нежелательных реакций со стороны сочетанной патологии. При этом описанные группы лекарственной терапии являются клинически эффективными и важность применения β-адреноблокаторов у больных ССЗ и β-агонистов у больных БА доказана многочисленными исследованиями [Кукес В.Г., 2003; GINA, 2011].

Степень разработанности исследования. К настоящему времени исследования β-AP проводились в основном у пациентов с отдельными нозологиями, такими как БА или АГ [Parfenova E.I., 1995; Hamm H.E., 1996; Hayes M.J., 1996; Yingxin P., 2003]. Отсутствуют объясненные на основании взаимодействия на уровне рецепторов сведения по применению β-агонистов и β-блокаторов у больных с сочетанной сердечнососудистой и бронхообструктивной патологией, в том числе, и влияние на безопасность и эффективность применения этих препаратов. Имеющимися в настоящее время методами исследования установить состояние β-AP в клинической практике невозможно. Поэтому, разработка метода позволит оценить изменение активности β-AP под влиянием специфических препаратов, понять патогенез кардиореспираторной патологии и разработать на этой основе оптимизированные подходы к лечению пациентов, что и обусловило актуальность темы, постановку цели и задач исследования.

Цель исследования. Изучить активность β-адренорецепторов у пациентов с бронхиальной астмой с сочетанной сердечно-сосудистой патологией под действием препаратов, взаимодействующих с β-адренорецепторами.

Задачи исследования

- 1. Разработать метод для определения активности β-адренорецепторов на клетках периферической крови.
- 2. Оценить активность β-адренорецепторов у больных бронхиальной астмой с сочетанной сердечно-сосудистой патологией до и на фоне терапии β-агонистами.
- 3. Оценить активность β-адренорецепторов у больных бронхиальной астмой с сочетанной сердечно-сосудистой патологией на фоне однократного применения селективных β-блокаторов.
- 4. Определить уровень маркеров воспаления (уровень выдыхаемого монооксида азота, высокочувствительного С-реактивного белка, эозинофильного катионного протеина, фактора некроза опухоли α, интерлейкинов 1β, 6, 8) у больных бронхиальной астмой с сочетанной сердечно-сосудистой патологией.
- 5. Выявить взаимосвязь функциональных показателей и данных радионуклидного

исследования у больных бронхиальной астмой с сочетанной сердечно-сосудистой патологией на фоне применения препаратов, взаимодействующих с β-адренорецепторами.

Научная новизна

Разработан применимый в клинической практике модифицированный радиолигандный метод определения активности связывания β -адренорецепторов на поверхности Т-лимфоцитов периферической крови, позволяющий оценить динамику активности β -адренорецепторов под влиянием препаратов, воздействующих на β -адренорецепторы.

Впервые β-адренорецепторов, проведена оценка активности связывания являющаяся характеристикой возможности рецептора связаться с селективным лигандом в стандартных условиях. Отмечено, что значение имеет профиль динамики активности связывания β-адренорецепторов, а не абсолютные значения определяемого параметра. Определена динамика активности β-адренорецепторов под действием селективных β_2 -агонистов и β_1 -адреноблокаторов у здоровых добровольцев и пациентов с бронхиальной астмой с сочетанной сердечно-сосудистой патологией. Установлено, что у здоровых добровольцев и пациентов с кардиореспираторной патологией под влиянием β2-агониста отмечается различный профиль изменения активности βадренорецепторов. Показано, что изменение активности связывания β_2 адренорецепторов зависит от дозы однократно применяемого селективного адреноблокатора. Выявлена взаимосвязь параметров функции внешнего дыхания, воспаления и активности связывания β₂-адренорецепторов лимфоцитов периферической крови у пациентов со стабильным течением бронхиальной астмы с сочетанной сердечно-сосудистой патологией.

Теоретическая и практическая значимость

На основе радиолигандного анализа разработан модифицированный метод, позволяющий оценить активность связывания β-адренорецепторов Т-лимфоцитов периферической крови. Дальнейшее развитие предложенного метода оценки динамики рецепторной активности клеток поможет более полно оценить механизмы влияния препаратов, воздействующих на β-адренорецепторы (β-агонисты и β-адреноблокаторы), особенности их взаимодействия при одновременном назначении, и использовать эти данные для выявления пациентов с высоким риском развития побочных эффектов от

назначаемой терапии и, возможно, осуществлять подбор необходимых индивидуальных доз лекарственных веществ для конкретного пациента.

Разработанный модифицированный метод радиолигандного анализа позволяет оценить активность связывания β -AP в клинической практике и предоставляет возможность исследовать динамику активности связывания β_1 и β_2 -AP, а также определить изменения показателя на фоне применения препаратов, влияющих на β -AP, для исследования взаимосвязи изменений β_1 и β_2 -AP.

Методология и методы диссертационного исследования

В ходе исследования использовались: моделирование, исторический, логический, графический методы. Результаты исследования обработаны с использованием компьютерной программы Statistica 7.0 с применением непараметрических методов дескриптивной и сравнительной статистики, корреляционного анализа. Во внимание принимались результаты с уровнем статистической надежности (р<0,05).

Работа состояла из 3-х этапов: отработка модифицированного радиолигандного метода, его верификации и апробации в клинической практике. Все здоровые добровольцы и пациенты оценивались по соответствию критериям включения/исключения и включались в исследование после подписания формы информированного согласия.

Положения, выносимые на защиту

- 1. При оценке активности связывания β-адренорецепторов (определяемой как характеристика возможности рецептора связаться с селективным лигандом при определенных условиях) имеет значение не однократное определение абсолютных показателей, а измерение профиля динамики данного параметра под влиянием специфических лигандов.
- 2. Характер изменения активности связывания β_2 -адренорецепторов здоровых добровольцев и пациентов с кардиореспираторной патологией различается, при этом у здоровых добровольцев, имеющих индекс курящего человека более 10 пачка/лет, профиль изменения активности связывания β -адренорецепторов соответствует пациентам с бронхиальной астмой с сочетанной сердечно-сосудистой патологией.
- 3. Имеется взаимосвязь между активностью связывания β_1 и β_2 -адренорецепторов, что проявляется в виде изменения активности связывания β_2 -адренорецептотов на фоне применения β_1 -адреноблокаторов в зависимости от дозы и длительности применения

препарата.

4. Активность связывания β_2 -адренорецепторов, определяемая с помощью модифицированного метода, ассоциирована с параметрами спирометрии и выраженностью аллергического воспаления.

Степень достоверности научных положений, выводов, рекомендаций и апробация полученных результатов

Достоверность полученных результатов подтверждается объемом клиниколабораторных исследований у 84 добровольцев, использованием методик, отвечающих поставленным задачам и применением современных методов статистического анализа. Разработан модифицированный радиолигандный метод, применимый в клинической практике.

Апробация диссертации проведена на совместном заседании лаборатории пульмонологии отдела клинической медицины НИМСИ МГМСУ им. А.И. Евдокимова, НИИ КК им. А.Л. Мясникова и ИЭК ФГБУ «РКНПК» МЗ РФ, лаборатории изотопных методов анализа ИБХ РАН им. акад. М.М. Шемякина и Ю.А. Овчинникова 18 апреля 2016 г.

Основные положения диссертации представлены на конференциях и конгрессах в виде устных докладов: 24rd European Meeting on hypertension and Cardiovascular protection (Афины, Греция), 2014; ERS Annual Congress, Мюнхен, Германия, 2014; международная конференция «Кардиоваскулярная фармакотерапия: от теории к практике» Москва, 2015; 25rd European Meeting on hypertension and Cardiovascular protection Милан, Италия, 2015; 12th World Congress on Inflammation, 2015, Бостон, США; научно-практическая конференция «От научных исследований в пульмонологии-Москва, 2016; VIII Всероссийский практическим алгоритмам», образовательный форум с международным участием «Медицинская диагностика -2016», Москва; Всероссийская научно-практическая конференция с международным участием (56 ежегодная сессия РКНПК) «Кардиология 2016: итоги и перспективы», Москва, 2016; и в виде постерных сессий: 24th Meeting of the ISH, Сидней, Австралия, 2012; ERS Annual Congress, Вена, Австрия, 2012; ERS Annual Congress, Амстердам, Нидерланды, 2015.

Соответствие диссертации паспорту научной специальности

Научные положения диссертации соответствуют формуле специальности 14.01.25 –пульмонология. Результаты проведенного исследования соответствуют области исследования специальности, конкретно пунктам 1, 2, 3, 5 паспорта пульмонологии (медицинские науки).

Внедрение результатов исследования в практику

Результаты исследования внедрены в научную и практическую работу лаборатории пульмонологии отдела клинической медицины НИМСИ МГМСУ им. А.И. Евдокимова.

Личный вклад автора

Вклад автора является определяющим и заключается в непосредственном участии на всех этапах исследования от выбора темы исследования, постановки задач, их реализации до обобщения и обсуждения полученных результатов в научных публикациях, докладах и внедрения в практику. Автором лично проведен сбор и обработка теоретического и экспериментального материала и дано научное обоснование выводов. Диссертация и автореферат написаны автором лично.

Публикации

По теме диссертации опубликовано 25 печатных работ (статей - 11, тезисов — 14), в том числе 7 — в журналах, входящих в перечень ВАК Министерства образования и науки Российской Федерации. Получено положительное решение ЕАПО о выдаче евразийского патента от 04.07.2016г. по заявке № 201500560/28.

Связь темы диссертационной работы с планом научных работ организации

Диссертационная работа является фрагментом исследований лаборатории в области разработки новых методов диагностики и терапии бронхообструктивной патологии.

Структура и объем диссертации

Работа изложена на 188 страницах машинописного текста, состоит из введения, обзора литературы, главы материалов и методов, результатов проведенных исследований, обсуждения, выводов, практических рекомендаций и библиографического указателя, включающего 279 источников, в том числе 234 на иностранных языках. Диссертация иллюстрирована 40 рисунками и документирована 43 таблицами.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Ha первом этапе работы проводилась отработка модифицированного радиолигандного метода на лимфоцитах периферической крови 30 добровольцев. Второй включал верификацию модифицированного метода на клонах трансфицированных клеток HEK293-hADRB1-EGFP-6 (ARG6), экспрессирующих β₁-AP (ADRB1) и HEK293-hADRB2-EGFP-9 (A2R-9), экспрессирующих β_2 -AP (ADRB2), полученных из лаборатории клеточной инженерии ИЭК ФГБУ "РКНПК" МЗ РФ методом стабильной трансфекции родительской клеточной линии НЕК293. Третий – клиническая апробация нового метода. Прескрининг включал 260 человек, из них включены 18 здоровых добровольцев и 36 пациентов с БА и АГ, проходящих лечение на базе НИИ КК им. А.Л. Мясникова ФГБУ «РКНПК» МЗ РФ, соответствующих критериям включения/исключения.

В группу здоровых добровольцев включались мужчины и женщины старше 18 лет. В группу исследования включались мужчины и женщины старше 18 лет с легкой/среднетяжелой БА и сердечно-сосудистыми заболеваниями, в том числе, требующих назначения β-адреноблокаторов. Диагнозы БА и АГ устанавливались согласно международным критериям GINA (Global Initiative for Asthma 2011г.), рекомендациям РМО по АГ и ВНОК 2010г.

Клиническая характеристика здоровых добровольцев и пациентов с БА и АГ третьего этапа исследования. Дизайн и схема исследования.

В исследование было включено 18 здоровых добровольцев, 36 пациентов с БА и АГ. Клиническая характеристика представлена в таблице 1. Часть пациентов имели показания для назначений препаратов из группы β -адреноблокаторов (рекомендация лечащих врачей) и они были разделены на 2 группы в зависимости от препарата (β_2 -агонист или β_1 -блокатор), на фоне которого оценивалось изменение активности связывания β -АР. 22 пациента с БА и АГ оценивались на фоне применения β_2 -агониста короткого действия (из них 7 пациентов длительно находились на терапии селективным β_1 -блокатором, 5 — не имели терапию иГКС); 14 - на фоне применения селективного β_1 -адреноблокатора и β_2 -агониста короткого действия.

Дизайн исследования

Третий этап исследования состоял из одного визита. Здоровым добровольцам и пациентам с БА и АГ измерялись АД, ЧСС, уровень насыщения крови кислородом, уровень NO в выдыхаемом воздухе (анализатор NObreath Bedfont Scientific Ltd, Великобритания), проводилась компьютерная спирометрия с бронходилатационной пробой с Сальбутамолом 400 мкг ("SuperSpiro" Micro Medical Ltd. Великобритания [Miller M.R., 2005]), проводились лабораторные исследования: общий, биохимический анализы крови, определялись активность связывания β_2 -AP, уровень маркеров воспаления в сыворотке периферической крови: эозинофильный катионный протеин (Immulite 2000. Siemens Healthcare Diagnostics, США-Германия), высокочувствительный С-реактивный белок («Беринг Нефелометр», ВN Pro Spec, Германия), интерлейкины 1β, 6, 8, фактор некроза опухоли α (мультиплексный анализ, MagPix «Віо-Rad», США). Пациентам с БА и АГ также оценивалась степень тяжести заболеваний, терапия, заполнялся опросник по определению контроля БА: тест АСТ (Asthma Control TestTM, QualityMetric Inc., CIIIA).

Таблица 1. Клиническая характеристика здоровых добровольцев и пациентов с БА и АГ, включенных в исследование.

	Пациенты БА и АГ	Здоровые	p
		добровольцы	
Возраст, лет	63,0 [57;69]	35,0 [29;52]	<0,05
Мужчины/женщины	17(47%)/19(53%)	11(61%)/7(39%)	>0,05
ИМТ, кг/м ²	28,6 [25,1;31,4]	24,8[21,6;29,7]	<0,05
Длительность АГ, годы	13,5 [7,0;20,5]	-	
Длительность БА, годы	12,0 [7,0;20,0]	-	
БА легкой/средней степени	9 (25%)/27 (75%)	-	
АГ, I/II/III стадия	4(11%)/18(50%)/14(39%)	-	
ИБС, І/ІІ ФК	8(22%)/5(14%)	-	
СД 2 типа	10 (28%)	-	
ОНМК в анамнезе	4 (11%)	-	
ИМ в анамнезе	1 (3%)	-	
Риск ССО, 1/2/3/4,	1(3,0%)/6(17%)/14(39%)/15(41%)/	-	
Курение в анамнезе / в	14 (39%) / 4 (11%)	1 (5,6%) / 2 (11,1%)	<0,05
настоящее время			
ИКЧ, пачка/лет	15,0 [5,0;15,0]	10,0 [10,0;22,0]	>0,05

Примечание. Данные представлены в виде медианы [25; 75 перцентиль] и абсолютного числа пациентов (% от общего числа). ИБС – ишемическая болезнь сердца. СД – сахарный диабет. ОНМК – острое нарушение мозгового кровообращения. ИМ – инфаркт миокарда. ИКЧ – индекс курящего человека.

Схема исследования

Статистическая обработка данных

Статистический анализ проводился с использованием программы Statistica 7.0. Вид распределения оценивался W-тест Шапиро-Уилка. Сравнение средних значений количественных переменных проводилось с помощью непараметрического критерия Манна-Уитни. Для исследования эффекта изменения активности связывания рецепторов использовался парный критерий Вилкоксона. Критерий Даннета применялся для сравнения начальных значений с последующими измерениями. Для выявления взаимосвязей между показателями рассчитывали коэффициент ранговой корреляции Спирмена. Уровень значимости для всех использованных критериев р <0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ОБСУЖДЕНИЕ

Первый и второй этапы. Модификация метода радиолигандного анализа

На основе метода классического радиолигандного анализа [Williams L.T., 1976] разработан способ, применимый в клинической практике. В качестве неспецифического лиганда был выбран [125 I]цианопиндолол (блокатор β_1 - и β_2 -AP), использующийся в большом количестве работ [Арипова Н.А., 1989; Парфенова Е.В., 1996]. Для

определения специфического β₁ и β₂-AP были выбраны соединения СGP 20712 и ICI 118551 [Bundkirchen A., 2003; Kerstjens H.A., 2012]. В качестве оптимальной модели были выбраны лимфоциты периферической крови [Minneman K.P., 1981], количество которых в реакционной смеси определено в процессе отработки метода в диапазоне от 500 тыс. Концентрация β_2 -лиганда (ICI118551) определения специфического β_2 -связывания составила 0,16 мкМ, которая вытесняет [125] Пцианопиндолола, и не приводит к переизбытку нерадиоактивного лиганда. Для определения β₁-специфического связывания был выбран CGP20712. Однако даже при высоких концентрациях (до 1 мкМ) β_1 -лиганда существенного снижения связывания [125] Цианопиндолола с лимфоцитами здоровых добровольцев не обнаружилось, и показало, что количество β_1 -рецепторов у исследуемой группы чрезвычайно мало и не может быть зафиксировано этим методом, что согласуется с литературными данными [Наеп Е., 1987]. Использование трансфицированных клеток с синтезированным β_1 -AP на поверхности позволило определить β_1 -AP, подобрать необходимую концентрацию лиганда и продемонстрировало, что разработанный модифицированный метод позволяет проводить оценку активности не только β_2 -, но и β_1 -AP, причем модифицированная методика позволяет измерить данные типы рецепторов селективно и специфично, даже при наличии нескольких типов рецепторов одновременно.

В ходе проведенных экспериментов отработана модифицированная методика. Все реакции и измерения проводили в трех параллелях. 100 мкл [125] цианопиндолола с концентрацией 1000 имп./мин./мкл, 10 мкл раствора немеченого цианопиндолола / воды / раствора немеченого лиганда и 100 мкл суспензии клеток с концентрацией 5-10 млн./мл инкубировали в течение 1 ч при 37°С при перемешивании на шейкере. Реакцию связывания останавливали, клетки отмывали, количество связавшегося радиоактивного материала просчитывали на γ-счетчике Wallac Wizard 1470 (PerkinElmer), измеряя количество радиоактивного материала в каждой пробе. Эффективность счета около 60%.

Определен новый интегральный параметр – активность связывания β-AP (акт. β-AP), определяющийся количеством, сродством и доступностью рецепторов для связывания специфическим лигандом, т.е. способность рецептора связывать определяемое количество меченого лиганда в строго определенных условиях, выраженное в имп./мин. на 1 млн клеток. Модифицированный метод позволяет

определить активность связывания β -AP лимфоцитов человека с использованием $[^{125}I]$ цианопиндолола с чувствительностью $10^{-15}-10^{-16}$ моля в образце.

В процессе отработки метода использовались суммарные лимфоциты. При этом в самой работе использовались только Т-лимфоциты периферической крови, в связи с различной экспрессией β-AP на различных подтипах лимфоцитов [Landmann R.M., 1984; Kerry R., 1984; Rasmussen H., 1975].

Результаты обследования группы здоровых добровольцев. Третий этап.

Включенные в исследование здоровые добровольцы (n=18) не имели кардиореспираторной патологии. Уровень САД составил 120[115;120] мм рт.ст., уровень ДАД – 70[70;75] мм рт.ст. ЧСС – 70[68;71] ударов в минуту. Уровень насыщения крови кислородом составил – 99%. По результатам проведенной ЭКГ - ритм синусовый, нарушений ритма и проводимости нет. Проведенные общий клинический и биохимический анализы крови отклонений от референсных значений не показали. При проведении спирометрии параметры соответствовали возрастной норме, бронходилатационная проба с β_2 -агонистом отрицательная у всех добровольцев.

По полученным результатам оценки акт. β_2 -AP выявлено, что величина акт. β_2 -AP сильно варьирует и нельзя говорить о диапазоне нормальных значений, так как он колеблется в широких пределах — от 200 до 14500 имп./мин. на 1 млн клеток. Это соответствует колебаниям от 100 до 7250 β_2 -AP на клетку (рис. 1).

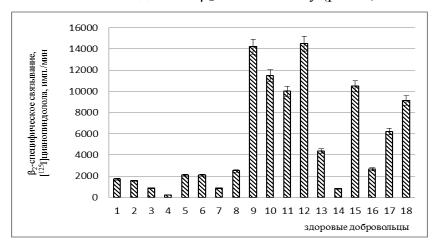
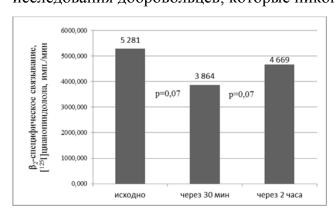



Рисунок 1. β_2 -Специфическое связывание [125 I]цианопиндолола на Т-лимфоцитах 18 здоровых добровольцев в присутствии 0,16 мкМ ICI 118551.

Показано, что однократное измерение акт. β_2 -AP при фиксированной концентрации лиганда не дает полной информации о состоянии рецепторного звена. При этом модифицированная методика позволяет провести исследование в динамике под влиянием внешнего стандартного стимула и оценить изменение акт. β_2 -AP.

Применение данной модификации позволяет говорить об оценке функциональной характеристики рецепторного звена.

Определение исходных значений и изменение акт. β_2 -AP через 30 минут после ингаляции β₂-агониста проводилось у 11 здоровых добровольцев. Учитывая наличие разнонаправленной динамики (β₂-рецепторное связывание снижалось у 7 добровольцев) для оценки дальнейших изменений оценивалось акт. β_2 -AP через 2 ч после ингаляции β_2 -Данный промежуток времени был определен в связи с периодом полувыведения препарата [Nials A.T., 1994]. Ошибка измерений в триплетных пробах не превышала 10%. Полученные результаты параллельных восстановление акт. β2-АР почти до исходного уровня у всех добровольцев. Несмотря на существенную разницу в абсолютной величине связывания [125] цианопиндолола, наблюдалась схожая динамика изменений акт. В2-АР у части добровольцев, и было выявлено, что большое значение имеет наличие статуса курения. Результаты исследования добровольцев, которые никогда не курили, представлены на рисунке 2.

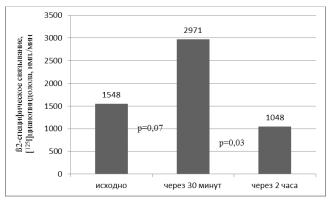


Рисунок 2. Изменения активности у здоровых некурящих добровольцев.

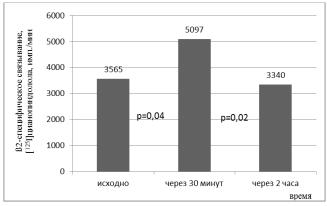
Рисунок 3. Изменения активности связывания у здоровых добровольцев, имеющих ИКЧ более 10 пачка/лет.

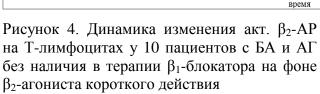
Акт. β_2 -АР у здоровых некурящих добровольцев имеет тенденцию к снижению через 30 минут после ингаляции 400 мкг β_2 -агониста и к возвращению через 2 час, что соответствует имеющимся работам, где показано снижение количества рецепторов у здоровых добровольцев [Вигтап К.D., 1985] и соответствует данным о влиянии β -агонистов на рецепторы и развитию эффекта десенситизации [Mialet-Perez J.,2004].

Результаты, полученные у здоровых добровольцев, имеющих ИКЧ более 10 пачка/лет, представлены на рисунке 3 и выявлена тенденция к повышению акт. β_2 -AP через 30 минут после ингаляции β_2 -агониста и возвращается к исходной величине через 2 часа. Представленные результаты свидетельствуют о различной направленности динамики акт. β_2 -AP у здоровых добровольцев под влиянием курения. Было показано,

что курение изменяет рецепторные характеристики (снижает экспрессию рецепторов) и пассивное курение связано с возможным развитием бронхообструктивной патологии и измененным рецепторным ответом [Wang Z., 2001], а отказ от курения приводил к постепенному увеличению плотности β_2 -AP на лимфоцитах [Laustiola K.E., 1991].

Результаты обследования пациентов с бронхиальной астмой с сочетанной сердечно-сосудистой патологией на фоне применения β_2 -агониста на третьем этапе исследования


В данную группу было включено 22 пациента с БА и АГ в возрасте 63,0 [57,0;69,0] года (53% женщин и 47% мужчин). ИМТ составила 28,6 [25,1;31,4] кг/м². БА легкой степени тяжести имели 9 (25%), среднетяжелой – 2 (75%) пациента; АГ I ст. у 4 (11%) пациентов, II ст. - 18(50%), III ст. - 14 (39%), ИБС I ФК - 8 (22%), II ФК - 5(14%). Уровень САД составил 130,0[120,0;136,5] мм.рт.ст., ДАД - 75,5[70,0;80,0] мм.рт.ст., ЧСС - 75,0 [70,5;76,0] уд/мин. β-адреноблокаторы принимали 7 пациентов (19%). По результатам теста АСТ все пациенты с БА и АГ соответствуют критериям включения/исключения - контролированной БА. При проведении спирометрии в целом по группе пациентов с БА и АГ параметры соответствовали возрастной норме. ОФВ1л, % и ФЖЕЛл, % достоверно увеличивались после применения β2-агониста короткого действия.


По результатам модифицированного метода, также как и у здоровых добровольцев, исходно имелся значительный разброс показателей уровней акт. β_2 -AP. Через 30 мин после ингаляции β_2 —агониста β_2 -рецепторное связывание повышалось у 15 добровольцев (у 7-х отмечено снижение или отсутствие изменений акт. β_2 -AP). Отмечена тенденция к возвращению к исходному уровню показателей активности через 2 часа после β_2 -агониста. Представленные изменения имеют разнонаправленную динамику. Учитывая возможное влияние применяемой терапии у пациентов на изменение акт. β -AP, пациенты были разделены в зависимости от наличия в терапии иГКС и длительного применения селективных β_1 -адреноблокаторов.

В группу пациентов, не имеющих в терапии β_1 -адреноблокатор и находящихся на терапии иГКС было включено 10 пациентов с БА и АГ. Из них 20% мужчин, 80% женщин. Длительность БА составила 7[5;13] лет, длительность АГ - 8,5 [2,0;25,5] года. Пациенты, имеющие легкую и среднетяжелую БА, разделились поровну. Уровень АД - 131[120;138]/76,0[70;80] мм рт.ст., ЧСС 72,0[68;75]уд. в мин. По данным теста АСТ

отмечено, что пациенты имели контролируемую БА и, по сравнению с пациентами с БА и АГ в целом по группе, реже отмечали затрудненное дыхание днем и появление ночных симптомов БА. В группе пациентов без наличия в терапии β_1 -блокатора (n=10) ОФВ1 исходно составил 2,0[1,9;2,8]л и 85,5[77,0;95,0]%. После применения β_2 -агониста короткого действия отмечается достоверное увеличение ОФВ1 (p=0,002).

Результаты исследования акт. β_2 -АР по данным модицифированного метода пациентов с БА и АГ без наличия в терапии селективного β_1 -блокатора показывают статистически значимое повышение акт. β_2 -AP через 30 минут после ингаляции β_2 агониста и достоверное снижение через 2 часа (рис.4). Отмеченное увеличение акт. β2-АР не соответствует имеющимся данным и, в доступной литературе, выявлялось снижение количества β_2 -AP на фоне применения β_2 -агониста [Harden T.K., 1980; Scola А.М. 2004], что дает возможность сказать, что акт. β-АР является самостоятельным параметром. В связи с тем, что это интегральный параметр, определяющийся не только количественной характеристикой, изменения его динамики может быть связано со вкладом и других характеристик рецептора, например, аффинности β_2 -AP к лигандам. Литературные данные противоречивы: так, применение сальбутамола не вызывает изменений константы диссоциации (сродства) [Blankesteijn W.M., 1992], при этом отмечено снижение аффинности как на фоне короткодействующих, длительнодействующих адреномиметиков другими авторами [Nishikawa M., 1996]. В нашей работе примененный модифицированный радиолигандный метод оценивает принципиально новый параметр, при этом данный параметр исследовался у пациентов с сочетанной патологией, где изменения адренорецептороного звена зависят не только от назначаемых препаратов, но и от особенностей патогенеза заболеваний.

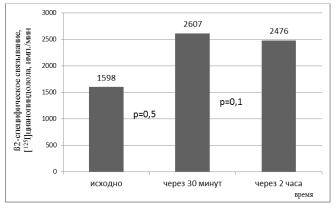
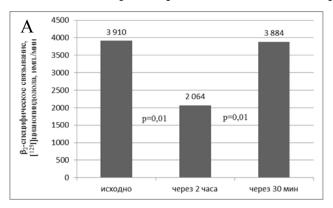


Рисунок 5. Данные изменения акт. β_2 -AP на Тлимфоцитах у 7 пациентов с БА с наличием в терапии β_1 -блокатора на фоне применения β_2 -агониста короткого действия.

Динамика представленной подгруппы пациентов с БА и АГ соответствует изменениям акт. β -AP у здоровых добровольцев, имеющих анамнез курения [Zhang G., 2007]. С учетом проведенных исследований, показывающих возможную связь курения и развития БА, можно объяснить наличие сопоставимой динамики акт. β_2 -AP у здоровых добровольцев с ИКЧ более 10 пачка/лет и пациентов с уже имеющимися заболеваниями [Wang Z., 2001].

В другую группу пациентов было включено 7 добровольцев с БА и АГ, имеющих в терапии β_1 -селективный блокатор. Терапия иГКС и применение β_1 -блокатора оставались стабильными минимум в течение года. При оценке клинической симптоматики пациенты данной группы не отличались по уровню ночных, дневных симптомов БА от пациентов без терапии селективным β_1 -адреноблокатором. ОФВ1 исходно составил $2,0[1,5;2,83]\pi$ И 81,0[63,0;99,0]%; ФЖЕЛ $2,9[2,3;3,1]\pi$ 100,0[79,0;119,0]%. После применения β_2 -агониста короткого действия отмечается достоверное увеличение ОФВ1 (р=0,020). Полученные результаты показывают, что у пациентов с постоянным приемом β_1 -блокатора акт. β_2 -AP не имеет статистически значимых отличий (рис.5). Такую картину на фоне применения селективного β2агониста сложно сопоставить с данными литературы. Таким образом, можно предположить, что длительный прием селективного β_1 -блокатора не приводит к изменению профиля динамики акт. β_2 -AP в ответ на прием β_2 -агониста.

5 пациентов с БА и АГ были выделены в отдельную подгруппу, при этом у них отсутствовала терапия иГКС в течение 4-х недель до включения в исследование. По данным АСТ-теста определялась контролируемая БА, при этом количество дневных, ночных симптомов и частота применения короткодействующих препаратов была выше по сравнению с другими описанными группами пациентов с БА и АГ, находящимися на терапии иГКС. Акт. β_2 -АР у 4-х из 5-ти пациентов без терапии иГКС имеет тенденцию к снижению и возвращению до исходного уровня на фоне сальбутамола. Полученные данные можно сопоставить с литературными – снижение количества рецепторов при применении β_2 -агонистов [Міскеу Ј., 1975]. При этом, в сравнении с другими подгруппами пациентов с БА и АГ – акт. β_2 -АР имеют противоположную динамику, что, вероятно, можно объяснить отсутствием в терапии иГКС, которые могут увеличивать количество β -АР [Вrusasco V., 2006].


Результаты обследования пациентов с бронхиальной астмой с сочетанной сердечно-сосудистой патологией на фоне однократного применения селективного β₁-адреноблокатора на третьем этапе исследования

В работе также проводилась оценка акт. β_2 -AP на фоне однократного назначения селективного β_1 -блокатора и последующего применения β_2 -агониста короткого действия. Прием селективного β_1 -блокатора был рекомендован лечащими врачами. Оценка риска развития бронхообструкции при назначении первой дозы селективного β_1 -блокатора проводилась с помощью острой 4-х часовой спирометрической пробы [Назаров Б.М., 2014]. Было включено 14 добровольцев в возрасте 61,0 [58,0;68,0] года, 9 мужчин (64,3%), 5 женщины (35,7%). Длительность АГ - 12,0 [10,0;21,0]лет, с I ст. - 1 пациент (6,7%). Длительность БА - 14,5 [8,0;25,0]года, легкая степень БА – 1 пациент (6,7%), 93,3% - БА средней степени тяжести. По результатам АСТ-теста у каждого пациента определялся контроль БА, при этом, по сравнению с пациентами, обследованными на фоне применения β_2 -агониста, определялись редкие ночные и дневные симптомы БА, и сами пациенты оценивали контроль БА как «хороший».

4-х часовая спирометрическая проба проводилась пациентам с низкими (2,5 мг и ниже) и со средними дозами (5мг) бисопролола. 8-ми пациентам с БА и АГ проба проводилась с 1,25 и 2,5 мг, 6-ти – с 5 мг бисопролола. По данным проведенной спирометрической пробы в среднем по группе снижения параметров спирометрии (ОФВ1 и ФЖЕЛ) на фоне применения селективного β₁-блокатора не отмечается. Однако у части пациентов, включенных в исследование, отмечалось снижение ОФВ1 и максимальное падение ОФВ1 у пациентов регистрировалось в разные точки исследования. Так, у 2-х - через 90 минут (100 мл и 2%; 150 мл и 18%) от приема селективного β₁-блокатора, у 1-го через 150 минут (320 мл и 5%) и большее количество пациентов имели падение ОФВ1 через 240 минут у 6 пациентов (90 мл и 4%; 80 мл и 2%; 30мл и 2 %; 360 мл и 9%; 200 мл и 4%; 90мл и 4%). Снижение параметров спирометрии не сопровождалось клиническими симптомами бронхообструкции и не превышало 12% и 200 мл по параметру ОФВ1.

Время забора крови для определения акт. β_2 -AP у данной исследуемой группы отличалось от ранее представленных (исходно, через 2 часа после приема однократной дозы бисопролола и через 30 минут после ингаляции сальбутамола (400 мкг)). Была определена разнонаправленная динамика акт. β_2 -AP у пациентов. Было установлено, что

определяющим значением является доза используемого селективного β_1 -блокатора. В зависимости от этого параметра пациенты с БА и АГ распределились на 2 подгруппы, оцененные на фоне применения низких и средних доз бисопролола (рис.6а и 6б).

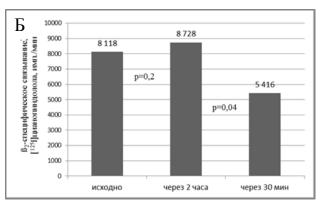


Рисунок 6. β_2 -Специфическое связывание [125 I]цианопиндолола на Т-лимфоцитах 14-ти пациентов с БА и АГ исходно, через 2 после 2,5мг и ниже (A) и 5 мг (Б) β_1 -блокатора и через 30 минут после ингаляции β_2 -агониста короткого действия (сальбутамола).

Назначение бисопролола в дозе 2,5 мг и ниже приводит к снижению акт. β2-АР и значительное увеличение ее после применения β2-агониста, в то время как, назначение 5 мг не приводит к изменению акт. β2-АР. По данным литературы показано, что применение неселективного **β**-блокатора вызывало увеличение плотности лимфоцитарных β₂-AP на 25-40% как в острой пробе (при однократном приеме), так и при длительном применении [Brodde O.E., 1986; Elfellah M.S., 1989]. Аналогичные изменения лимфоцитарных β-АР отмечались и при длительном приеме β2-селективного антагониста – ICI 118,551 в исследованиях, проводимых на экспериментальных животных [Michel M.C., 1987]. С другой стороны, часть авторов не отмечает увеличения плотности β_2 -AP на фоне назначения β_1 -блокаторов [Lacasa D., 1984], что соотносится с изменением акт. β_2 -AP на фоне применения 5 мг бисопролола. При этом отмечено, что применение β-блокаторов приводит к снижению аффинности рецепторов без четкой зависимости от липофильности препаратов [Blankesteijn W.M., 1992]. На основании полученных изменений можно отметить, что реакция на однократное применение селективного β_1 -блокатора у пациентов с БА и АГ имеет разнонаправленный характер и зависит от дозы назначаемого селективного β_1 -блокатора.

Уровень маркеров воспаления у здоровых добровольцев и пациентов с бронхиальной астмой с сочетанной сердечно-сосудистой патологией на третьем этапе исследования

Всем включенным добровольцам в исследование проводилась оценка уровня FeNO в выдыхаемом воздухе, который был значимо выше в группе пациентов с БА и АГ

(17,5 [13,0;24,0] ppb) по сравнению с группой здоровых добровольцев (4,0 [3,0;5,0] ppb). При этом у пациентов с БА и АГ без терапии иГКС уровень FeNO достоверно выше (27,5 ppb) по сравнению с пациентами, принимающими иГКС, что соответствует литературным данным [GINA, 2015]

У всех, включенных в исследование, также оценивались следующие маркеры воспаления: высокочувствительный С-реактивный белок (вчСРБ), эозинофильный катионный протеин (ЭКП), интерлейкин 16ета (ИЛ-1 β), интерлейкин 6 (ИЛ-6), интерлейкин 8 (ИЛ-8), фактор некроза опухоли альфа (ФНО- α). При сравнении групп здоровых добровольцев и пациентов с БА и АГ по маркерам воспаления достоверных отличий получено не было. Это может быть связано включением пациентов с АГ и контролируемым течением БА. Это подтверждает отсутствие влияния дополнительных факторов, таких как активация воспалительного процесса и влияние его на активность рецепторного ответа. Было показано, что ИЛ-1 β на культуре клеток продемонстрировал снижение ответа цАМФ при стимуляции β_2 -АР [Billington C.K., 2003] и отмечалось уменьшение количества β -АР при повышении ИЛ-1 β .

Взаимосвязь параметров компьютерной спирометрии и других методов исследования

Был проведен анализ взаимосвязи показателей спирометрии и динамики акт. β -AP. У здоровых добровольцев отмечена обратная корреляционная связь между ОФВ1% исходно, ОФВ1% постБД и изменением акт. β_2 -AP через 30 минут от исходного уровня на фоне применения β_2 -агониста (r=-0,73, p=0,04; r=-0,79, p=0,02). В целом по группе пациентов с БА и АГ отмечается прямая зависимость ОФВ1, ФЖЕЛ и уровня акт. β_2 -AP через 30 минут после применения β_2 -агониста (r=0,44; p=0,038; r=0,54; p=0,009). При разделении пациентов на подгруппы в зависимости от наличия длительной терапии селективным β_1 -блокатором у пациентов без такой терапии взаимосвязь показателей спирометрии и акт. β_2 -AP имеет обратную направленность (ОФВ1л и акт. β_2 -AP исходно, r=-0,64; p=0,044), в то время как наличие в терапии селективного β_1 -блокатора приводит к формированию прямой корреляционной связи (ОФВ1% и акт. β_2 -AP исходно, r=0,93; p=0,002). Таким образом, можно сделать вывод, что имеется связь между параметрами функционального метода обследования и акт. β_2 -AP, а ее направленность (прямая или обратная) в группе пациентов с БА и АГ зависит от наличия в терапии селективного β_1 -блокатора.

В группе пациентов с БА и АГ, наблюдавшихся на фоне однократно назначения селективного β_1 -адреноблокатора, вне зависимости от дозы назначаемого препарата (низкая или средняя) направленность корреляционной связи между параметрами спирометрии и акт. β_2 -АР сохранялась прямой (ОФВ1л 90 мин и Δ акт. β_2 -АР постБД и исходно - r=0,88; p=0,018; ФЖЕЛ% 150 мин и Δ акт. β_2 -АР постБД и исходно - r=0,87; p=0,004). Таким образом, как на фоне однократного (острая проба), так и длительного применения β_1 -адреноблокатора у пациенты с БА и АГ направленность корреляционной связи между функциональными параметрами и результатами радионуклидного метода не отличается и подтверждают зависимость акт. β_2 -АР от влияния препаратов, воздействующих на β -АР. Несмотря на то, что у пациентов с БА и АГ применялся высокоселективный β_1 -блокатор, зафиксировано изменение активности связывания β_2 -АР даже на фоне применения низких и средних доз β_1 -блокатора, что подтверждает взаимодействие β_1 -АР и β_2 -АР, в том числе и на клеточном уровне.

Учитывая, что БА является воспалительным заболеванием [GINA, 2011], в работе проводился анализ взаимосвязи уровня воспалительных маркеров, параметров спирометрии и акт. β_2 -АР. Было выявлено, что в целом по группе пациентов с БА и АГ при применении β_2 -агониста имелась обратная корреляционная связь между параметром ЭКП (отражающим выраженность эозинофильного воспаления) [Niimi A., 1998] и акт. β_2 -АР лимфоцитов периферической крови (r=-0,5; p=0,03). У пациентов с БА и АГ без терапии селективным β_1 -блокатором направленность данной корреляционной связи не меняется и сохраняется отрицательной (ОФВ1л и ЭКП - r=-0,72, p=0,018). Наличие в терапии у пациентов с БА и АГ длительного применения селективного β_1 -блокатора приводит к изменению взаимоотношений данных параметров (r=0,82, p=0,041).

В целом по группе пациентов наличие достоверных связей между показателями спирометрии и воспалительными параметрами выявлено не было. Распределение пациентов на подгруппы показало наличие обратной корреляционной связи между параметрами спирометрии и уровнем ЭКП (ОФВ1л и ЭКП - r=-0,72, p=0,018) у пациентов с БА и АГ без терапии селективным β_1 -блокатором и прямой корреляционной связи этих показателей (ОФВ1л и ЭКП - r=0,82, p=0,041) у пациентов с БА и АГ, имеющих в терапии селективный β_1 -блокатор. Причем, между акт. β_2 -АР и уровнем показателей воспаления как в целом по группе пациентов с БА и АГ, так и в распределившихся подгруппах выявлена обратная взаимосвязь между акт. β_2 -АР и

параметрами эозинофильного воспаления (ЭКП и FeNO) [Niimi A., 1998; Loutsios C., 2014]. Таким образом, можно сделать вывод о том, что взаимоотношение различных компонентов эозинофильной воспалительной реакции и характеристик β_2 -AP в значительной степени также зависит от приема β_1 -адреноблокатора, что дает возможность делать заключение о взаимосвязи β -адренорецепторного звена и воспалительных механизмов у пациентов с БА.

Острое назначение селективного β_1 -блокатора у пациентов с БА и АГ выявило прямую корреляционную связь между параметрами спирометрии и уровнем NO в выдыхаемом воздухе, отражающим выраженность эозинофильного воспаления (ОФВ1л 90 мин и FeNO (r=0,83; p=0,041)). В данной группе пациентов между вчСРБ, ИЛ-1 β , ИЛ-6, ФНО- α и активностью связывания β_2 -АР достоверных корреляционных связей выявлено не было, при этом, отмечена связь между уровнем ИЛ-8 и Δ акт. β_2 -АР постБД и исходно (r=0,81; p=0,049). В связи с тем, что ИЛ-8 является основным хемоатрактантом [Nakagome K., 2011] и активатором нейтрофилов, можно предположить наличие патогенетической взаимосвязи между активностью связывания β_2 -АР и не только эозинофильного, но и нейтрофильного воспаления.

Таким образом, предложенный нами модифицированный метод определения активности связывания β_2 -AP позволяет оценить не просто изменение количественной составляющей рецепторных изменений, а, в целом, изменение активности рецепторного звена на фоне изменения активности эозинофильного и нейтрофильного воспаления у пациентов с сочетанной патологией. Использование разработанного модифицированного метода позволяет оценить изменение рецепторного ответа на применение специфических лигандов.

Выводы

- 1. На основе радиолигандного анализа разработан модифицированный метод, позволяющий оценить активность связывания β-адренорецепторов на поверхности клеток периферической крови в клинической практике. С помощью предложенного метода проведена оценка динамики их активности на фоне применения препаратов, влияющих на β-адренорецепторы.
- 2. Установлено, что рецепторная активность Т-лимфоцитов у разных людей колеблется в широком диапазоне, что подтверждает целесообразность использования не абсолютных значений, а проводить оценку профиля динамики активности.

- 3. Определено, что у здоровых добровольцев и у пациентов с сочетанной кардиореспираторной патологией профиль активности связывания β_2 -адренорецепторов Т-лимфоцитов имеет разнонаправленную динамику. У здоровых добровольцев под действием β_2 -агониста она снижается, у пациентов с бронхиальной астмой и артериальной гипертонией повышается. После окончания действия активность возвращается к исходному уровню.
- 4. У пациентов с бронхиальной астмой и артериальной гипертонией, имеющих показания к назначению β -адреноблокаторов, выявлено различие динамики активности связывания β_2 -адренорецепторов Т-лимфоцитов в зависимости от первой дозы селективного β_1 -адреноблокатора. Назначение низких доз бисопролола (2,5 мг в сутки и ниже) приводит к снижению активности связывания β_2 -адренорецепторов Т-лимфоцитов с последующим увеличением на фоне применения β_2 -агониста, в то время как назначение средних доз (5 мг в сутки) бисопролола не вызывает изменения активности и приводит к снижению на фоне применения β_2 -агониста.
- Изучение уровня маркеров воспаления установило, что у пациентов с контролируемой бронхиальной астмой И артериальной гипертонией уровень монооксида азота в выдыхаемом воздухе достоверно выше (17,5[13,0;24,0] ppb) по добровольцами (4,0[3,0;5,0]сравнению co здоровыми ppb). Уровень высокочувствительного С-реактивного белка, эозинофильного катионного протеина, фактора некроза опухоли α , интерлейкинов 1 β , 6, 8 у пациентов не отличаются от группы здоровых добровольцев.
- 6. У пациентов с бронхиальной астмой и артериальной гипертонией имеется корреляционная связь между спирометрическими параметрами и активностью связывания β_2 -адренорецепторов, при этом длительное применение β_1 -адреноблокатора приводит к формированию прямой корреляционной связи, отсутствие его в терапии к отрицательной.

Практическое применение

Для оценки воздействия на рецепторные структуры целесообразно определять профиль изменения активности связывания β-адренорецепторов под влиянием специфических лигандов в рамках научных исследований в области пульмонологии.

Определение профиля изменения активности связывания β_2 -адренорецепторов под влиянием как β_1 -, так и β_2 - специфических лигандов в перспективе возможно для

выявления больных с сочетанной бронхообструктивной и сердечно-сосудистой патологией с более высоким риском развития нежелательных явлений как на фоне применения β_1 -адреноблокаторов, так и β_2 -агонистов. Использование данного метода в клинической практике возможно после его валидизации в широкомасштабных исследованиях.

Список работ, опубликованных по теме диссертации

- 1. Зыков, К.А. Комбинированная бронхолитическая терапия бронхиальной астмы у пациентов с сопутствующей сердечно-сосудистой патологией / К.А. Зыков, О.Ю. Агапова // Consilium medicum. 2011. № 3. С.75-80.
- 2. Зыков, К.А. Ингаляционные бета-агонисты и М-холинолитики при бронхиальной астме с позиций рецепторных взаимодействий / К.А. Зыков, О.Ю. Агапова // Трудный пациент. 2011. № 11. С.16-20.
- 3. Артериальная гипертония и бронхообструктивная патология особенности клинической картины / Л.Г. Ратова, К.А. Зыков, Ю.А. Долгушева, О.Ю. Агапова и др. // Системные гипертензии. 2012. т.9. №1. С.54-58.
- 4. Зыков, К.А. Комбинированная бронхолитическая терапия у пациентов с хронической обструктивной болезнью легких и сочетанной сердечно-сосудистой патологией / К.А. Зыков, О.Ю. Агапова // Атмосфера. Пульмонология и аллергология. -2012.-№4 -C.24-30.
- 5. Немедикаментозные методы лечения пациентов с артериальной гипертензией и бронхообструктивной патологией / К.А. Зыков, Л.Г. Ратова, О.Ю. Агапова, И.Е. Чазова // Системные гипертензии. 2012. т. 13. №3. С.54-58.
- 6. The influence of a single low dose of cardioselektive beta-bloker on pulmonary function in patients with arterial hypertension and bronchial asthma / L. Ratova, K. Zykov, I. Chazova, O. Agapova et al. // Abstracts of the 24th Meeting of the ISH, Sydney, Australia (30 September -4 October). -2012.
- 7. How chronic obstructive pulmonary disease or asthma affects target organ damage in patients with hypertension? / L. Ratova, K. Zykov, O. Agapova et al. // Abstracts of the 24th Meeting of the ISH, Sydney, Australia (30 September 4 October). 2012. N-608
- 8. Нужна ли спирометрия при сердечно-сосудистых заболеваниях? / Б.М. Назаров, К.А. Зыков, Л.Г. Ратова, О.Ю. Агапова и др. //Системные гипертензии. 2013. -N 2. C.69-74.
- 9. Зыков, К.А. Короткодействующие бронхолитики в лечении острого бронхита / К.А. Зыков, О.Ю. Агапова // Русский медицинский журнал. 2013. т. 21. № 29. С.1505-1508.

- 10. Зыков, К.А. Новые возможности применения амброксола в пульмонологии: влияние на биопленки / К.А. Зыков, О.Ю. Агапова, Е.И. Соколов // Болезни органов дыхания. Приложение к журналу Consilium medicum. 2014. № 1. С. 27-32.
- Эффективность и безопасность применения селективного бета-блокатора (бисопролола)
 у пациентов с сердечно-сосудистыми и бронхообструктивными заболеваниями / Б.М.
 Назаров, О.Ю. Агапова, Ю.А. Долгушева и др. // Атеросклероз и дислипидемии. 2014. №4. С.30-34.
- 12. Agapova, O. New method of evaluation of β -receptors affinity and expression / O. Agapova, K. Zykov, Y. Skoblov // Eur Respir J. 2014. v.44. suppl. 58. p.22.
- 13. Reproducibility acute test with a single dose of β -blocker / O. Agapova, L. Ratova, K. Zykov et al. // Eur Respir J. -2014. -v. 44. suppl. 58. -p.22.
- 14. Effects of beta-blockers on lung in bronchial asthma patients / O. Agapova, L. Ratova, B. Nazarov et al. // Journal of hypertension. 2014. v.44. suppl. 58. p.1771.
- 15. Effects of single low dose of bisoprolol in patients with arterial hypertension and chronic obstructive pulmonary disease / O. Agapova, L. Ratova, K. Zykov et al. // Journal of hypertension. 2014. vol. 32. e-suppl 1. e.93.
- 16. Relationship between lung function and cardiac function in patients with cardiovascular disease. 24th European Meeting on Hypertension and Cardiovascular Protection Greece, June13-16, 2014 / B. Nazarov, L. Ratova, K. Zykov, O. Agapova et al. // Journal of hypertension. 2014. vol. 32. e-suppl 1. e.141.
- 17. Beta-agonists with different time of action in patients with cardiovascular and bronchoobstructive diseases / Y. Dolgusheva, K. Zykov, B. Nazarov, O. Agapova et al. // Journal of hypertension. -2014. vol. 32. e-suppl 1. e.207.
- 18. Influence of the bronchoobstructive disease on parameters of cardiovascular in patients with arterial hypertension / Y. Dolgusheva, K. Zykov, O. Agapova et al. // Journal of hypertension. 2014. vol. 32. e-suppl 1. e.518.
- 19. Радиолигандный метод оценки рецепторной активности бета-адренорецепторов Т-лимфоцитов человека / О.Ю. Агапова, Ю.С. Скоблов, К.А. Зыков и др. // Биоорганическая химия. -2015. Т.41. №5. С.592-598.
- 20. Безопасность применения β -адреномиметиков разной длительности действия у пациентов с артериальной гипертонией в сочетании с бронхообструктивными заболеваниями / Ю.А. Долгушева, О.Ю. Агапова, К.А. Зыков и др. // Системные гипертензии. − 2015. № 1. − С.65-69.
- 21. Effect of the ambient temperature variations on blood pressure in patients with arterial

hypertension and bronchoobstructive disease / Y. Dolgusheva, O. Agapova, O. Sivacova et al. // Journal of Hypertension. – 2015. - v. 33. - e-Suppl. 1. - E-419.

- 22. The limitations of clinical questionnaires in patients with cardiorespiratory pathology / O. Agapova, Y. Dolgusheva, B. Nazarov et al. // Journal of Hypertension. 2015. v. 33. e-Suppl. 1. e-424.
- 23. Effects of beta-blockers on lung function in patients with bronchoobstructive diseases / O. Agapova, B. Nazarov, Y. Dolgusheva et al. // Journal of Hypertension. 2015. v. 33. e-Suppl.1 e-460.
- 24. The new method of evaluation of β-adrenoreceptor, s activity / K.A. Zykov, O. Y. Agapova, Y S. Skoblov et al. // Abstracts book of the 12th World Congress on Inflammation. 2015. № 107. S.93.
- 25. Положительное решение ЕАПО о выдаче евразийского патента «Радиолигандный способ количественной оценки рецепторной активности β -адренорецепторов на поверхности Т-лимфоцитов человека» от 04.07.2016г. по заявке № 201500560/28 от 22.06.2015г.

Список сокращений

АГ – Артериальная гипертония

АД - Артериальное давление

акт. β_2 -AP – активность связывания β_2 -адренорецепторов

 Δ акт. β_2 -AP - изменение активности связывания β_2 -адренорецепторов

ACT тест - Asthma Control Test^{тм}

БА – Бронхиальная астма

ДАД – Диастолическое артериальное давление

иГКС – Ингаляционные глюкокортикостероиды

ИМТ - Индекс массы тела

ОФВ1 - Объем форсированного выдоха за 1 секунду

САД – Систолическое артериальное давление

ССЗ – Сердечно-сосудистые заболевания

ФЖЕЛ – Форсированная жизненная емкость легких

ЭКП – Эозинофильный катионный протеин

GINA - Global Initiative for Asthma

FeNO - уровня монооксида азота в выдыхаемом воздухе